
Revisiting the functional bootstrap in TFHE
Antonio Guimarães, Edson Borin, and Diego F. Aranha

University of Campinas, Brazil, and Aarhus University, Denmark

Context

Efficiently evaluating non-linear functions with

high precision is a challenge for Fully Homomor-

phic Encryption schemes.

CKKS [4]

Approximations using

Taylor, Fourier, and

Chebyshev series.

Good performance for

low-precision

approximations.

TFHE [5]

Circuits are implemented

using binary logic gates.

Low throughput of

operations.

New approach:

Functional Bootstrap [1]

The Functional Boostrap in TFHE

All known FHE schemes are
noisy.
The noise increases with the arithmetic
operations.
Eventually it would affect correctness.

Bootstrap
A usually expensive process that resets the noise.

Functional Bootstrap [1]
Evaluates a function within the bootstrap at
(almost) no additional cost.
In TFHE, the bootstrap is a Lookup Table (LUT)
evaluation, which is great for non-linear functions.

Problem
Large look-up tables require large parameters.
TFHE efficiency comes from using small
parameters.

0

0.22

1/2

0

1/8

2/8

3/8

(input with error)

1/8
(output)

Figure 1. TFHE Bootstrap Example,
evaluating a floor function over the
Torus discretized in multiples of 1/8.

Two methods for evaluating

large Look-Up Tables

The message is

decomposed in d

digits. Each of them is

encrypted in a

ciphertext ci.

Tree-based method
Each ciphertext ci is used to
evaluate 2d−i LUTs
The results of the evaluation using ci
are used to create new LUTs for ci+1.
Figure 2 shows an example. Each
rectangle is a small LUT evaluation.

Chaining-method
A more functionally restricted
method, which presents better error
growth behavior.
Suitable for carry-like functions.
More details in the paper.

c1

c2

c3

Output

c0

Figure 2. Tree-PBS Example. 8-bit sigmoid.

Multiplications with linear

error growth

Typically, multiplications

increase the error

variance quadratically.

Multi-value extract
method:
Allows obtaining multiple copies of the
same ciphertext, with independent
error.
One can perform multiplications with
linear error growth by adding these
copies.
The method is computationally
inexpensive and introduces a very low
probability of error.
We introduce it to improve the batch
bootstrapping technique of Carpov et
al.[3]

0 10 20 30 40
Scaling

0

1

2

3

4

5

6

7

8

Va
ria

nc
e

1e−4
Multi-value Extract
Multi-value Extract (PolyFit)
Multiplication
Multiplication (PolyFit)

Figure 3. Multi-value extract after 25-bit
precision gadget decomposition (` = 5 and
log2(Bg) = 5)

Practical Results

Compared to previous literature, our methods are

faster and have a lower probability of error for

similar or higher security levels. On the other hand,

they might require larger keys in some cases.

32-bit Integer comparison

Source λ
Key

Size

Error

Rate

Time

(ms)
Speedup

Bourse et al.[2]

90 1.2 -50∗ 2232∗ 1.75

109 3.4 -47∗ 3902∗ 1.00

211 4.6 -89∗ 3840∗ 1.02

Zhou et al.[7]
80 0.3 negl. 1143.2 0.93

127 0.3 negl. 1867.2 0.57

This work (1) 127 4.3 -26.51 334.1 3.19

This work (2) 127 6.5 -129.58 396.4 2.68

Table 1. 32-bit integer comparison. Key size in GB, error rate in log2. * Data provided by the
authors. We adjusted the speedup according to the differences in execution environments.

8-bit ReLU

Source λ
Key

Size

Error

Rate

Time

(ms)
Speedup

Lou et al.[6]
80 0.3 negl. 380 1.59

127 0.3 negl. 603.1 1.00

Zhou et al.[7]
80 0.3 negl. 64.8 9.31

127 0.3 negl. 103.1 5.85

This work (1) 127 4.3 -137.1 86.4 6.98

This work (2) 127 6.5 -181.0 103.6 5.82

Table 2. 8-bit Rectified Linear Unit (ReLU). Key size in GB, error rate in log2.

6-bit-to-6-bit Look-Up Table

Source λ
Key

Size

Error

Rate

Time

(ms)
Speedup

Carpov et al.[3] ≥128 8 -26.94 1570∗ 1.00

This work (1) 127 4.3 -59.59 378.2 2.49

This work (2) 127 6.5 -134.84 457.9 2.06

Table 3. 6-bit-to-6-bit generic function. Key size in GB, error rate in log2. * Data provided by
the authors. We adjusted the speedup according to the differences in execution
environments.

Implementation

To reproduce the results of this poster, using the orig-

inal TFHE library, see:

https://github.com/antoniocgj/FBT-TFHE

https://doi.org/10.46586/tches.v2021.i2.229-253

For an updated implementation containing all the

techniques presented in this paper and many oth-

ers, see:

MOSFHET: Optimized Software for FHE

over the Torus

https://github.com/antoniocgj/MOSFHET

https://eprint.iacr.org/2022/515

-
antonio.guimaraes@ic.unicamp.br

https://github.com/antoniocgj/FBT-TFHE
https://doi.org/10.46586/tches.v2021.i2.229-253
https://github.com/antoniocgj/MOSFHET
https://eprint.iacr.org/2022/515
mailto:antonio.guimaraes@ic.unicamp.br

