Revisiting the functional bootstrap in TFHE

Antonio Guimarães, Edson Borin, and Diego F. Aranha

University of Campinas, Brazil, and Aarhus University, Denmark

Context

Efficiently evaluating **non-linear** functions with **high precision** is a **challenge** for Fully Homomorphic Encryption schemes.

CKKS [4]

- Approximations using Taylor, Fourier, and Chebyshev series.
- Good performance for low-precision

TFHE [5]

- Circuits are implemented using binary logic gates.
 Low throughput of operations.
- New approach:

1/8~

Practical Results

Compared to previous literature, our methods are faster and have a lower probability of error for similar or higher security levels. On the other hand, they might require larger keys in some cases.

32-bit Integer comparison

Source	λ	Key Size	Error Rate	Time (ms)	Speedup
Bourse <i>et al.</i> [2]	90	1.2	-50*	2232*	1.75
	109	3.4	-47*	3902*	1.00
	211	4.6	-89*	3840*	1.02
Zhou <i>et al.</i> [7]	80	0.3	negl.	1143.2	0.93
	127	0.3	negl.	1867.2	0.57
This work (1)	127	4.3	-26.51	334.1	3.19
This work (2)	127	6.5	-129.58	396.4	2.68

approximations.

Functional Bootstrap [1]

The Functional Boostrap in TFHE

- All known FHE schemes are noisy.
 - The noise increases with the arithmetic operations.
 - Eventually it would affect correctness.

Bootstrap

A usually expensive process that resets the noise.

Functional Bootstrap [1]

- Evaluates a function within the bootstrap at (almost) no additional cost.
- In TFHE, the bootstrap is a Lookup Table (LUT)
- evaluation, which is great for non-linear functions. *Figure 1. TFHE Bootstrap Example,*

Problem

evaluating a floor function over the Torus discretized in multiples of 1/8.

1/8

2/8

3/8

0.22

(input with error

- Large look-up tables require large parameters.
- TFHE efficiency comes from using small parameters.

Two methods for evaluating large Look-Up Tables

Table 1. 32-bit integer comparison. Key size in GB, error rate in \log_2 . * Data provided by the authors. We adjusted the speedup according to the differences in execution environments.

8-bit ReLU

	Source	λ	Key Size	Error Rate	Time (ms)	Speedup
Lou et al.[6]	$\int \alpha u \alpha t \alpha \int \left[\frac{6}{6} \right]$	80	0.3	negl.	380	1.59
	127	0.3	negl.	603.1	1.00	
Zhou <i>et al.</i> [7]	80	0.3	negl.	64.8	9.31	
	127	0.3	negl.	103.1	5.85	
-	This work (1)	127	4.3	-137.1	86.4	6.98
-	This work (2)	127	6.5	-181.0	103.6	5.82

- The message is decomposed in *d* digits. Each of them is encrypted in a ciphertext c_i.
- Tree-based method
 Each ciphertext c_i is used to evaluate 2^{d-i} LUTs
 - The results of the evaluation using c_i are used to create new LUTs for c_{i+1}.
 - Figure 2 shows an example. Each rectangle is a small LUT evaluation.
- Chaining-method
- A more functionally restricted method, which presents better error growth behavior.
- Suitable for carry-like functions.
- More details in the paper.

Table 2. 8-bit Rectified Linear Unit (ReLU). Key size in GB, error rate in log_2 .

• 6-bit-to-6-bit Look-Up Table

Source	λ	Key Size	Error Rate	Time (ms)	Speedup
Carpov et al.[3] ≥	2128	8	-26.94	1570*	1.00
This work (1)	127	4.3	-59.59	378.2	2.49
This work (2)	127	6.5	-134.84	457.9	2.06

Table 3. 6-bit-to-6-bit generic function. Key size in GB, error rate in \log_2 . * Data provided by the authors. We adjusted the speedup according to the differences in execution environments.

Multiplications with linear error growth

Typically, multiplications

Implementation

To reproduce the results of this poster, using the original TFHE library, see:

https://github.com/antoniocgj/FBT-TFHE

increase the error variance **quadratically**.

- Multi-value extract method:
- Allows obtaining multiple copies of the same ciphertext, with independent error.
- One can perform multiplications with linear error growth by adding these copies.
- The method is computationally inexpensive and introduces a very low probability of error.
- We introduce it to improve the batch bootstrapping technique of Carpov et al.[3]

Figure 3. Multi-value extract after 25-bit precision gadget decomposition ($\ell = 5$ and $log_2(B_g) = 5$)

https://doi.org/10.46586/tches.v2021.i2.229-253

For an **updated** implementation containing all the techniques presented in this paper and **many oth-ers**, see:

- MOSFHET: Optimized Software for FHE over the Torus
- https://github.com/antoniocgj/MOSFHEThttps://eprint.iacr.org/2022/515

